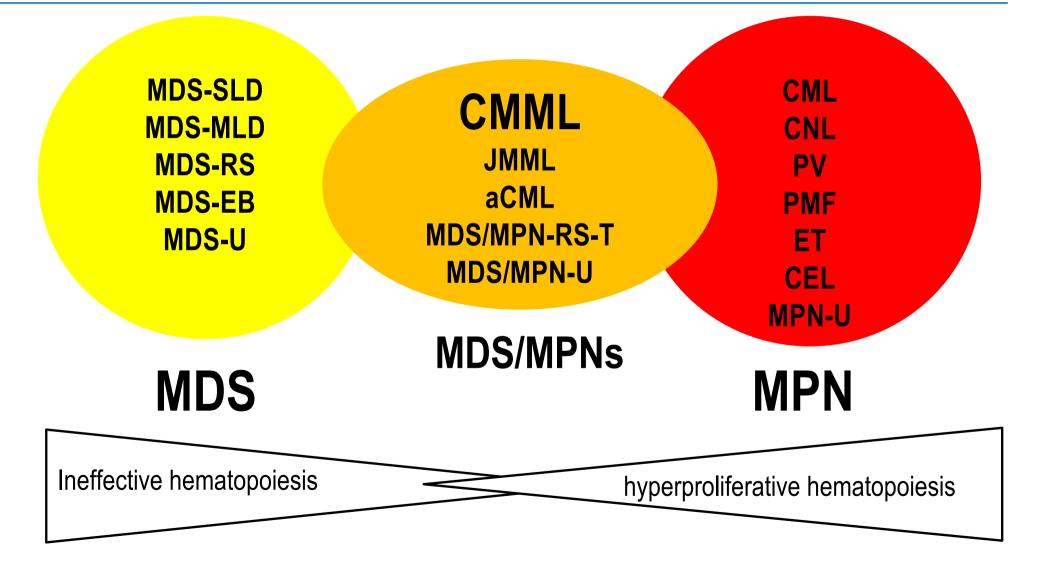


### Clinica e Terapia delle Sindromi Mielodisplastiche




# Diagnosi, classificazione e trattamento della LMMC

Francesco Onida

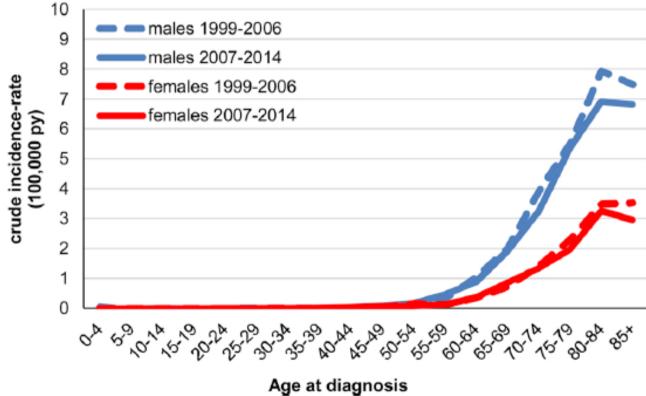
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Università degli Studi di Milano

### **OVERLAP** chronic myeloid malignancy



# **CMML: INCIDENCE**

4144 pts (1999-2014)


NIH

#### NATIONAL CANCER INSTITUTE

Surveillance, Epidemiology, and End Results Program

Age-standardized incidence rates stable: 0.32-0.38/100,000 py

Age  $\geq$  75yrs = 55%



Benzarti S. et al. Cancer Epidemiology 2019

## **CMML: WHO 2016 DIAGNOSTIC CRITERIA**

- Persistent peripheral blood monocytosis >1x10<sup>9</sup>/L, with monocytes accounting for ≥10% of the WBC count
- 2. Not meeting WHO criteria for BCR-ABL1 CML, PMF, PV, or ET
- 3. No evidence of PDGFR $\alpha$ , PDGFR $\beta$ , or FGFR1 rearrangement or PCM1-JAK2 (should be specifically excluded in cases with eosinophilia)
- 4. Fewer than 20% blasts\* in the blood and in the bone marrow
- 5. Dysplasia in 1 or more myeloid lineages. <u>If myelodysplasia is absent or minimal, the diagnosis of CMML</u> may still be made if the other requirements are met and:
  - ✓ an acquired, <u>clonal cytogenetic or molecular genetic abnormality</u> is present in the haemopoietic cells, *or*
  - $\checkmark$  the monocytosis has persisted for at least 3 months and
  - $\checkmark$  all other causes of monocytosis have been excluded

\*Blasts include myeloblasts, monoblasts and promonocytes.

Arber DA et al. Blood 2016; 127(20):2391-2405

## Monoblasts, Promonocytes and Monocytes: morphology

| Monocyte                              | Immature | Promonocyte | Monoblast |                                                | Monoblast           | Promonocyte                                                | Monocyte                                                                                                           |
|---------------------------------------|----------|-------------|-----------|------------------------------------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                       | 8        |             |           | Cells without<br>mask applied<br>to background |                     |                                                            |                                                                                                                    |
| Ser.                                  |          |             |           | N:C ratio                                      | 7:1 to 3:1          | 7:1 to 3:1                                                 | 4:1 to 2:1                                                                                                         |
| E.                                    |          |             |           | Cell shape                                     | Round to oval       | Round to oval                                              | Round with smooth<br>edges, may have<br>pseudopod-like<br>extensions                                               |
| Guasguen JE et al. Haematologica 2009 |          |             |           | Nuclear shape                                  | Round, more regular | Indented or lobulated,<br>more irregular than<br>monoblast | Indented, often reniform<br>or folded resembling<br>three-pointed hat, but<br>may be rounded, oval<br>or lobulated |
|                                       |          |             |           | Nucleali                                       | 1 or 2 distinct     | 1 or 2, less distinct                                      | Generally absent, but                                                                                              |

Nucleoli

Cytoplasm

1 or 2, distinct

Grey to cloudy blue,

few red granules

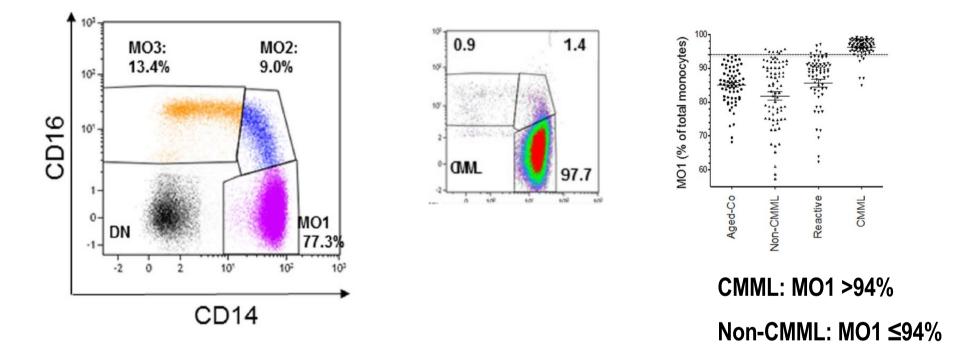
Osman M et al. J. Clin. Med. 2021

than monoblast

Grey to cloudy blue,

few red granules

occasionally small and


grey-blue, may contain

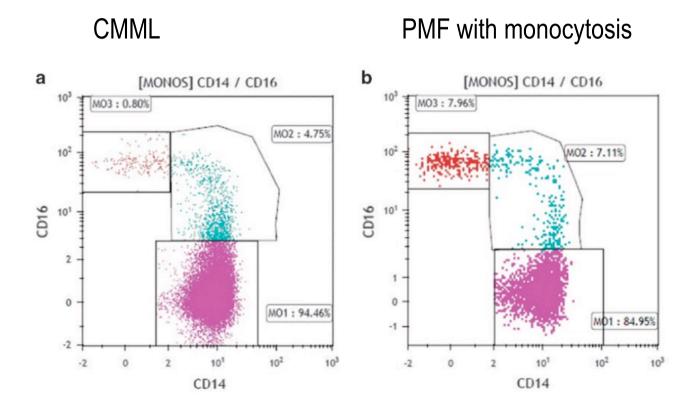
fine azurophilic granules

inconspicuous

Abundant grey or

## Flow cytometry as a diagnostic tool in CMML



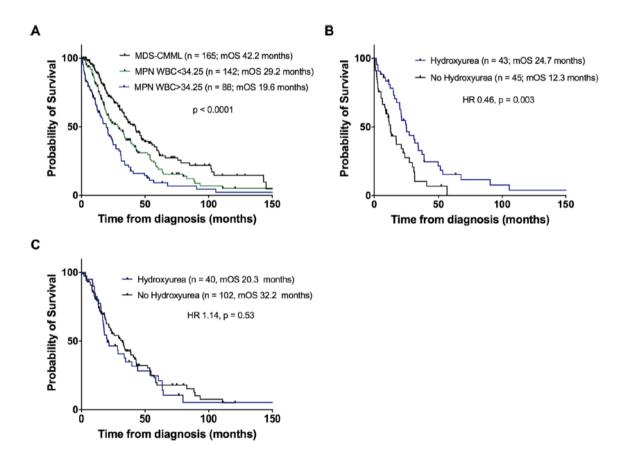

| Classical     | CD14 <sup>++</sup> CD16 <sup>-</sup> | CCR2hiCX3CR1low                                       | Resemble LY6C <sup>hi</sup> monocytes based on gene-expression arrays <sup>7,17,140</sup> |
|---------------|--------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Intermediate  | CD14 <sup>++</sup> CD16 <sup>+</sup> | CX <sub>3</sub> CR1 <sup>hi</sup> CCR2 <sup>low</sup> | Pro-inflammatory roles <sup>12,15</sup>                                                   |
| Non-classical | CD14 <sup>+</sup> CD16 <sup>++</sup> | CX3CR1 <sup>hi</sup> CCR2 <sup>low</sup>              | Patrolling <sup>14</sup> ; antiviral roles <sup>14</sup>                                  |

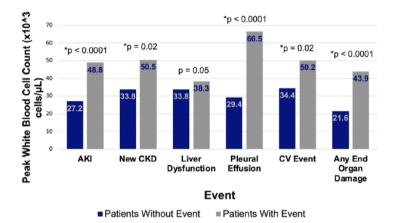
Selimoglu-Buet et al. Blood 2015

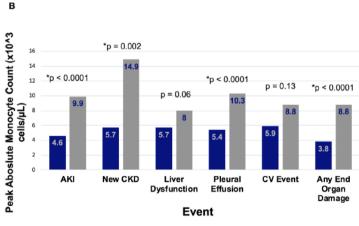
Talati C et al. Blood 2017

Shi C & Pamer Eg. Nat Rev Immunol. 2011

### Monocyte subsets analysis for distinction of CMML from MPN with monocytosis





Patnaik MM et al. Blood Cancer Journal 2017


# **CMML: current subclassification**

| WHO 2016                       | BP Blasts                  | BM Blasts                                                          |
|--------------------------------|----------------------------|--------------------------------------------------------------------|
| - CMML-0                       | <2%                        | <5%                                                                |
| – CMML-1                       | 2-4%                       | 5-9%                                                               |
| – CMML-2                       | 5-19%<br>or Auer rods      | 10-19%<br>or Auer rods                                             |
| FAB 1994 (endorsed by the WHC  | <b>)</b> 2016)             |                                                                    |
| - Myelodysplastic (MD)-CMML    | WBC ≤13x10 <sup>9</sup> /L |                                                                    |
| - Myeloproliferative (MP)-CMML | WBC >13x10 <sup>9</sup> /L | Arber DA et al. Blood 2016<br>Bennett JM et al. Br J Haematol 1994 |

# **CMML: prognostic impact of leukocytosis**

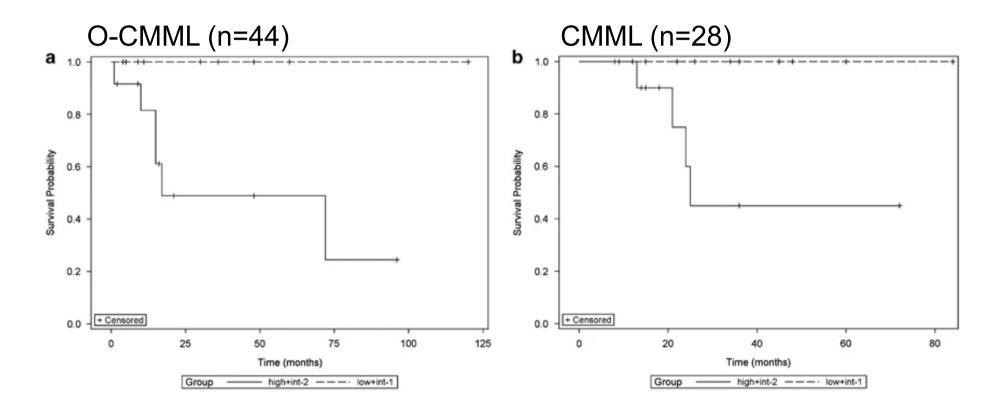






Patients Without Event Patients With Event

Hunter AM et al. Leukemia Research 109 (2021)

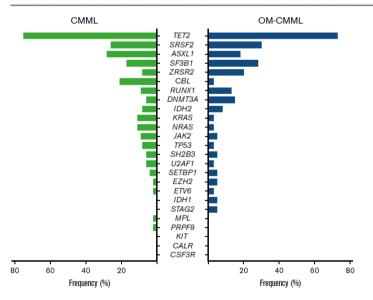

# **Oligomonocytic CMML: a new entity**

O-CMML:  $\geq 10\%$  peripheral blood monocytes with absolute monocyte count of 0.5–1 × 10<sup>9</sup>/L

|                     | OM-CMML                               | Control CMML                        | Significance |
|---------------------|---------------------------------------|-------------------------------------|--------------|
| Age (range)         | 65 (31–87) years                      | 72 (58–88) years                    | P=0.004      |
| WBC, mean (range)   | 3.9 (1.8–9.4) × 10 <sup>9</sup> /l    | 17.2 (3.0–69.0) x10 <sup>9</sup> /l | P<0.001      |
| PB, AMC             | 0.75 (0.52–0.97) × 10 <sup>9</sup> /l | 4.15 (1–19) x10 <sup>9</sup> /l     | P<0.001      |
| PB monocyte %       | 16.8 (10–48)%                         | 25.2 (10–47)%                       | No           |
| Hb, mean (range)    | 10.0 (6.8–14.7) g/dl                  | 10.9 (6.4–14.7) g/dl                | No           |
| MCV, mean (range)   | 97 (80–121) fl                        | 92 (62–113) fl                      | No           |
| Plt, mean (range)   | 138 (10–477) x10 <sup>9</sup> /l      | 103 (23–239) x10 <sup>9</sup> /l    | No           |
| Progression to CMML | 16/42 (38%)                           |                                     | _            |
| Progression to AML  | 11/42 (26%)                           | 5/28 (18%)                          | No           |
| Year 5±s.e. (%)ª    | 57.8±7.9                              | 80.1±11.9                           | P=0.027      |

Geyer JT et al. Modern Pathology (2017) 30, 1213–1222

# **Survival according to CPSS-Mol**




Geyer JT et al. Modern Pathology (2017) 30, 1213–1222

### International Working Conference on CMML diagnostic criteria

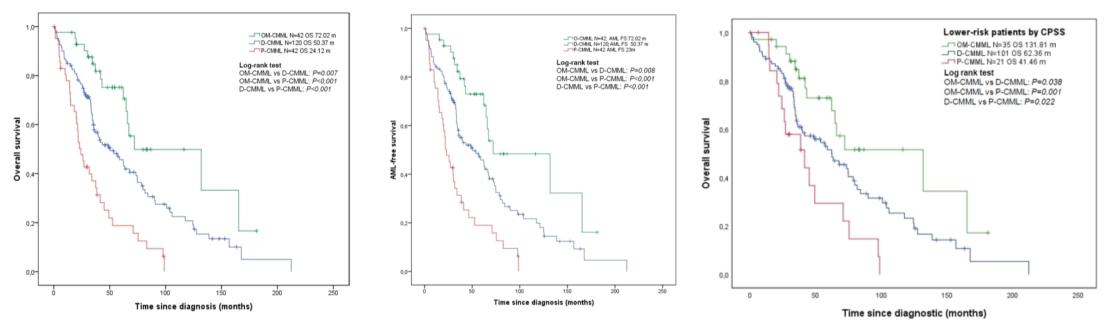
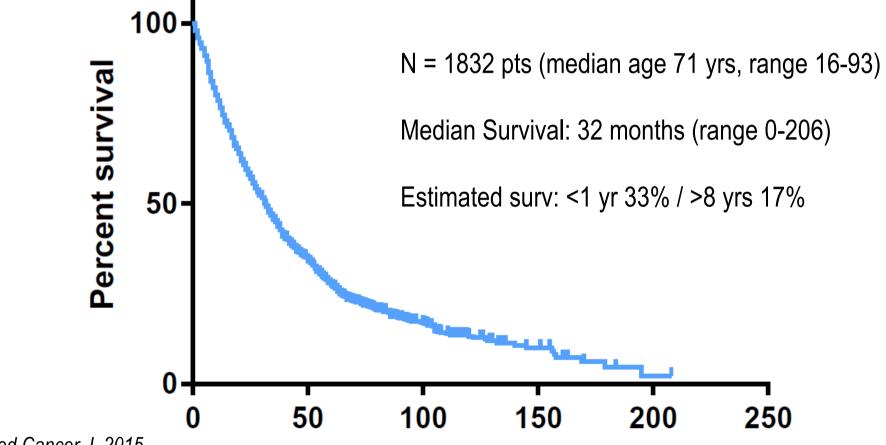

| Special variant                                                                                                                                                               | Key diagnostic features that discriminate the variant from classical CMML                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oligomonocytic CMML                                                                                                                                                           | Absolute PB monocyte count <1x10 <sup>e</sup> /L                                                                                                                                                                |
| SM with concomitant CMML = SM-CMML                                                                                                                                            | WHO criteria for SM fulfilled; in most patients CMML monocytes exhibit<br><i>KIT</i> D816V                                                                                                                      |
| CMML with a concomitant myeloid neoplasm* expressing a classical MPN- driver, such as <i>JAK2</i> V617F, <i>BCR-ABL1</i> or rearranged <i>PDGFRA/B</i> *** or <i>FGFR1</i> .  | WHO criteria for a classical MPN, such as CML**, PMF, or a myeloid neoplasm with rearranged <i>PDGFRA/B</i> are fulfilled in addition to the criteria for CMML.                                                 |
| CMML with expression of a molecular MPN-driver – examples:<br>CMML with <i>JAK2</i> V617F or CMML with a rearranged <i>PDGFRA/B</i> or<br>CMML with rearranged <i>FGFR1</i> . | Molecular drivers of classical MPN, such as <i>JAK2</i> V617F**** or rearranged <i>PDGFRA/B</i> *** are found but diagnostic criteria for such classical MPN are not fulfilled (only criteria for CMML are met) |
| CMML with a concomitant lymphoid/lymphoproliferative neoplasm                                                                                                                 | WHO criteria for a lymphoid neoplasm are fulfilled                                                                                                                                                              |

Table 2. Overview of special variants of chronic myelomonocytic leukemia.



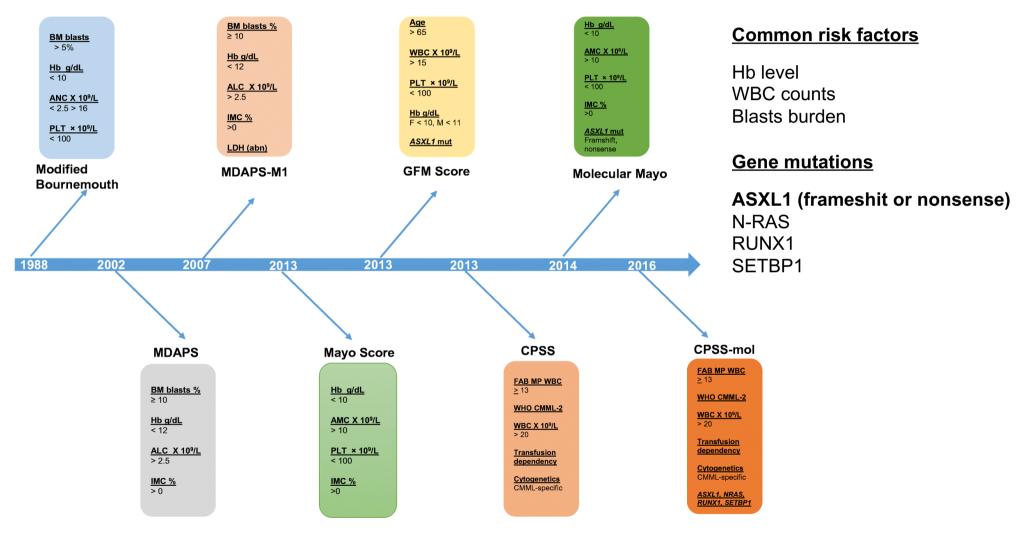
Valent P et al. Haematologica 2019 - Calvo X et al. Blood Adv 2020

# OM-CMML, D-CMML and P-CMML: an evolutionary continuum?




- 29.3% of OM-CMML patients progressed to D-CMML (median f-up 53 months)
- 28.6% of D-CMML patients progressed to P-CMML (median f-up 46 months)
- Gene mutations associated with increased proliferation (ASXL1, CBL and RAS pathway)

Calvo X. et al. Submitted


## **CMML: Prognosis [International CMML Consortium]**

Life expectancy in CMML varies greatly depending on several patient- and disease-specific factors



Padron E et al. Blood Cancer J. 2015

# **Prognostic scoring systems in CMML**



Nazha A et al. Curr Hematol Malig Rep 2018

# **Cytogenetic risk stratification in CMML**

P value

0.017

< 0.001

0.007

Low risk

..... Intermediate risk \_ . \_ . High risk

• Trisomy 8 (n=30; 27%) Abnormal karyotype: 110/414 (27%) (n=18; 16%) • -Y (n=12; 11%) Complex • Monosomy 7 (n=6; 5%) A B **CMML-specific IPSS CGs** 1.0 1.0 P < 0.001 P = 0.0010.8 0.8 0.6 0.6 Survival 8.07 Survival 9 • abn chr 7, complex, +8 0.2 0.2 n = 20 <u>n = 51</u> 0.0 0.0 120 24 24 96 120 144 ò 48 72 Months 96 72 Months

**Risk Groups** 

Low vs. High

Low vs. Intermediate

Intermediate vs. High

Figure 1. Unadjusted probability of overall survival according to (A) the new CMML-specific and (B) the IPSS cytogenetic risk classifications.

### Low risk:

• normal or –Y (single)

### High risk:

### Intermediate risk:

• all others



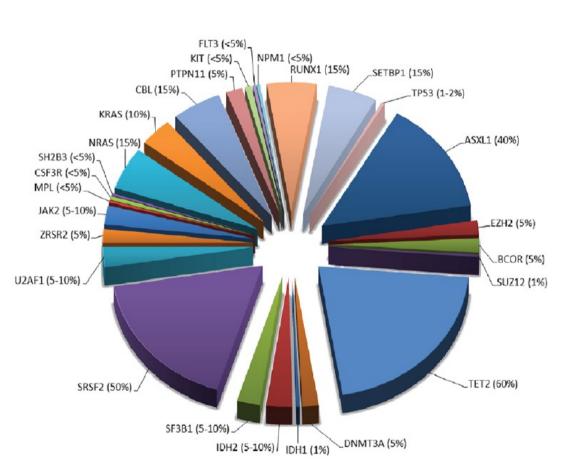
**Risk Groups** 

Low vs. High

Low vs. Intermediate

Intermediate vs. High

144

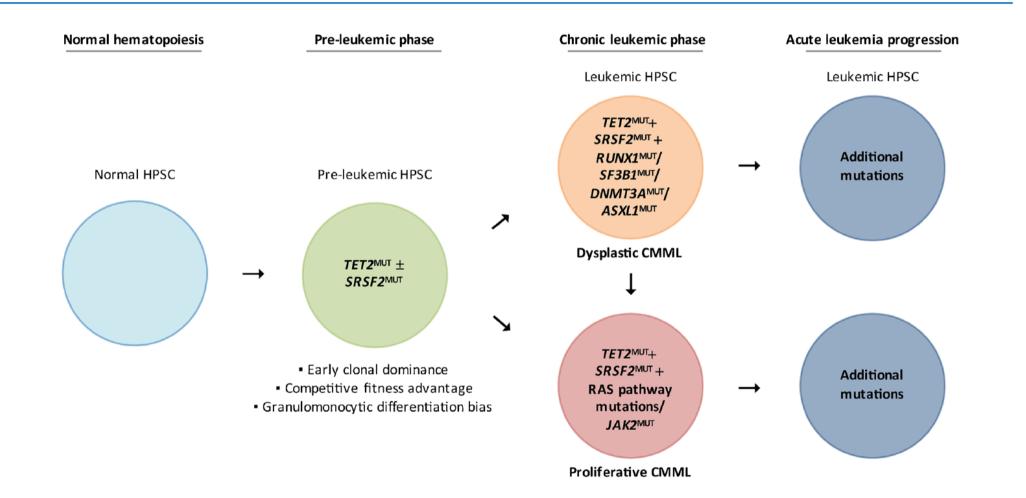

P value

< 0.001

< 0.001

0.51

# **CMML: Genomic Landscape**




| Major class of genetion | c mutation           | Gene                | Frequency of mutation (%) |
|-------------------------|----------------------|---------------------|---------------------------|
| Epigenetic control      | Histone modification | ASXL1 <sup>a</sup>  | 40                        |
|                         |                      | EZH2                | 5                         |
|                         | DNA methylation      | TET2                | 60                        |
|                         |                      | DNMT3A <sup>a</sup> | 5                         |
|                         | Dual effect          | IDH1                | 1                         |
|                         |                      | IDH2                | 5                         |
| Cell signaling          |                      | JAK2V617F           | 10                        |
|                         |                      | CBL                 | 15                        |
|                         |                      | NRAS <sup>a</sup>   | 15                        |
|                         |                      | KRAS                | 10                        |
|                         |                      | PTPN 11             | 5                         |
|                         |                      | NF1                 | <5                        |
|                         |                      | FLT3                | <5                        |
| Pre-mRNA splicing       |                      | SRSF2               | 50                        |
|                         |                      | SF3B1               | 5-10                      |
|                         |                      | U2AF1               | 5-10                      |
|                         |                      | ZRSR2               | 5                         |
| Transcription and nuc   | leosome assembly     | RUNX1ª              | 15                        |
|                         |                      | SETBP1 <sup>a</sup> | 15                        |
|                         |                      | GATA2               | 5                         |
| DNA damage              |                      | TP53 <sup>b</sup>   | <1                        |
|                         |                      | PHF6                | 5                         |

### ~ 90% of CMML patients harbour at least one mutation

Coltro G & Patnaik M. Curr Oncol Rep 2019 Patnaik MM & Tefferi A. AJH 2022

# **Clonal onset and evolution in CMML**

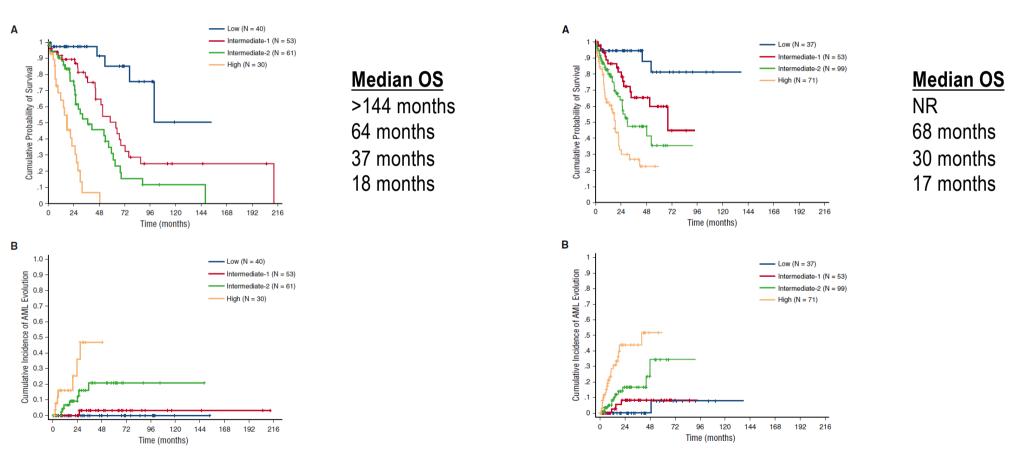


# **CPSS-molecular**

#### Table 2. Variables and prognostic score values of the CMML genetic score

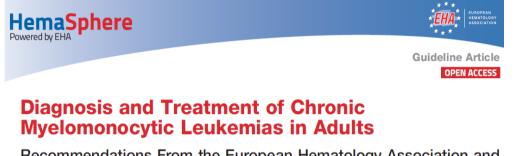
|                    | CPSS cytogenetic risk group* | ASXL1     | NRAS      | RUNX1     | SETBP1    |
|--------------------|------------------------------|-----------|-----------|-----------|-----------|
| Variable score     |                              |           |           |           |           |
| 0                  | Low                          | Unmutated | Unmutated | Unmutated | Unmutated |
| 1                  | Intermediate                 | Mutated   | Mutated   | _         | Mutated   |
| 2                  | High                         | _         | _         | Mutated   | _         |
| Genetic risk group | Score                        |           |           |           |           |
| Low                | 0                            |           |           |           |           |
| Intermediate-1     | 1                            |           |           |           |           |
| Intermediate-2     | 2                            |           |           |           |           |
| High               | ≥3                           |           |           |           |           |

#### Table 3. Variables and prognostic score values of the CPSS-Mol


|                     | Genetic risk group* | BM blasts | WBC count                | RBC transfusion dependency† |
|---------------------|---------------------|-----------|--------------------------|-----------------------------|
| Variable score      |                     |           |                          |                             |
| 0                   | Low                 | <5%       | $< 13 \times 10^{9}/L$   | No                          |
| 1                   | Intermediate-1      | ≥5%       | ≥13 × 10 <sup>9</sup> /L | Yes                         |
| 2                   | Intermediate-2      | _         | _                        | _                           |
| 3                   | High                | _         | _                        | _                           |
| CPSS-Mol risk group | Score               |           |                          |                             |
| Low                 | 0                   |           |                          |                             |
| Intermediate-1      | 1                   |           |                          |                             |
| Intermediate-2      | 2-3                 |           |                          |                             |
| High                | ≥4                  |           |                          |                             |

Elena C et al Blood. 2016 Sep 8;128(10):1408-17

# **CPSS-molecular**


*Learning cohort (n=214)* 

### Validation cohort (n=260)

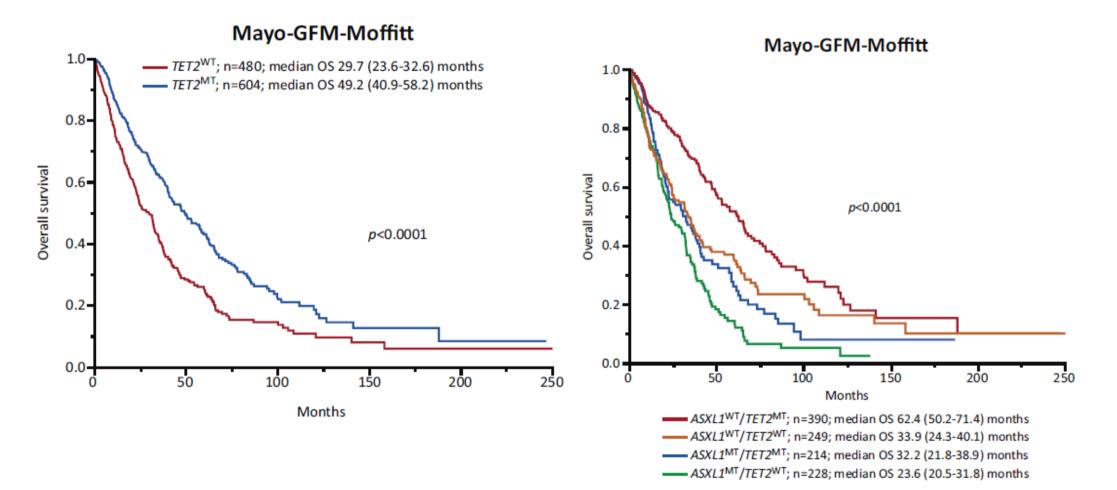


Elena C et al Blood. 2016 Sep 8;128(10):1408-17

## EHA/ELN 2018 Recommendations: molecular genetics



Recommendations From the European Hematology Association and the European LeukemiaNet


Raphael Itzykson<sup>1</sup>, Pierre Fenaux<sup>1</sup>, David Bowen<sup>2</sup>, Nicholas C.P. Cross<sup>3</sup>, Jorge Cortes<sup>4</sup>, Theo De Witte<sup>5</sup>, Ulrich Germing<sup>6</sup>, Francesco Onida<sup>7</sup>, Eric Padron<sup>8</sup>, Uwe Platzbecker<sup>9</sup>, Valeria Santini<sup>10</sup>, Guillermo F. Sanz<sup>11,12</sup>, Eric Solary<sup>13,14</sup>, Arjan Van de Loosdrecht<sup>15</sup>, Luca Malcovati<sup>16</sup>, on behalf of the European Hematology Association, the European LeukemiaNet

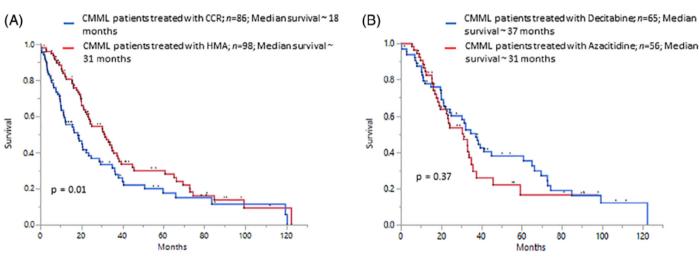
- Analysis of 4 genes (ASXL1, NRAS, RUNX1, SETBP1) is mandatory for risk assessment according to accepted risk scoring systems in patients eligible for transplant.
- Analysis of a minimum of 20 genes is recommended for patients being considered for active treatment, including transplantation.

Recommended minimal Next Generation Sequencing panel in CMML

| Gene                | Frequency, % | Pathway              |
|---------------------|--------------|----------------------|
| TET2                | 29-61        | Epigenetic modifiers |
| ASXL1               | 32-44        |                      |
| DNMT3A              | 2-12         |                      |
| EZH2                | 5–13         |                      |
| IDH1 <sup>a</sup>   | 1-2          |                      |
| IDH2ª               | 6-7          |                      |
| BCOR                | 6-7          |                      |
| SRSF2               | 29-52        | Spliceosome          |
| U2AF1               | 4–10         |                      |
| SF3B1               | 6–10         |                      |
| ZRSR2               | 4–8          |                      |
| CBL                 | 8–22         | Signaling            |
| KRAS                | 7–16         |                      |
| NRAS                | 4-22         |                      |
| NF1                 | 6-7          |                      |
| JAK2                | 1–10         |                      |
| RUNX1               | 8–23         | Other                |
| SETBP1              | 4–18         |                      |
| NPM1 <sup>b</sup>   | 1–3          |                      |
| FLT3 <sup>a,b</sup> | 1–3          |                      |

### **Prognostic impact of TET2 mutations in CMML**




Coltro G et al. Leukemia 2020

## **CMML: TREATMENT OPTIONS**

- Watch & Wait
- Supportive care (EPO, activin type II receptor ligand traps? TPO-RA?)
- HMAs (5-aza, DAC, guadecitabine?, oral HMAs?)
- Cytoreductive (Hydroxyurea, VP16, 6-MP)
- Intensive chemotherapy (AML-like)
- New drugs in clinical trial
- Allogeneic-HSCT

# Suboptimal response rate to HMAs in CMML

- 121 CMML patients: AZA = 56 / DAC = 65
- ORR 56% by the IWG MDS/MPN (AZA 56% / DAC 58%)
- CR <20% for both HMAs
- MD- vs MP-CMML: No difference
- 29% of pts in CR progressed to AML
- PD after response = Median OS 8 months
  Primary failure = Median OS 4 months
- Low LDH (<250 U/L) associated to ORR
- No impact of ASXL1 or TET2 mut
- HMAs vs CCR: 31 vs 18 months with no difference between AZA and DAC



Coston T. et al AJH 2019

### An Italian phase II multicentre trial of Decitabine in HR-CMML

- Age > 18 years (no upper limit)

- If WBC <12000/mm<sup>3</sup>: IPSS high or Int-2

- If WBC  $\geq$  12000/mm<sup>3</sup>: at least two of the following criteria

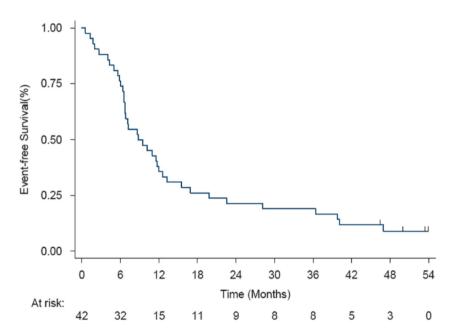
Blast cells > 5% in the bone marrow

Cytogenetic abnormality other than t(5;12) (q33;p13)

Anemia (Hb < 10 g/dl)

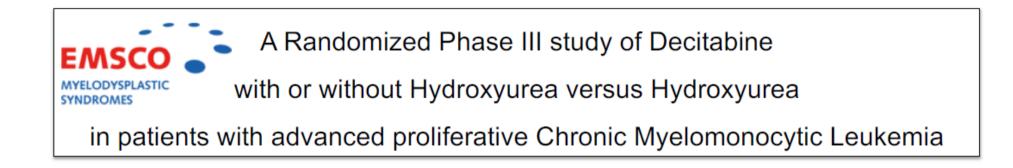
Thrombocytopenia (Plt < 100.000/mm<sup>3</sup>)

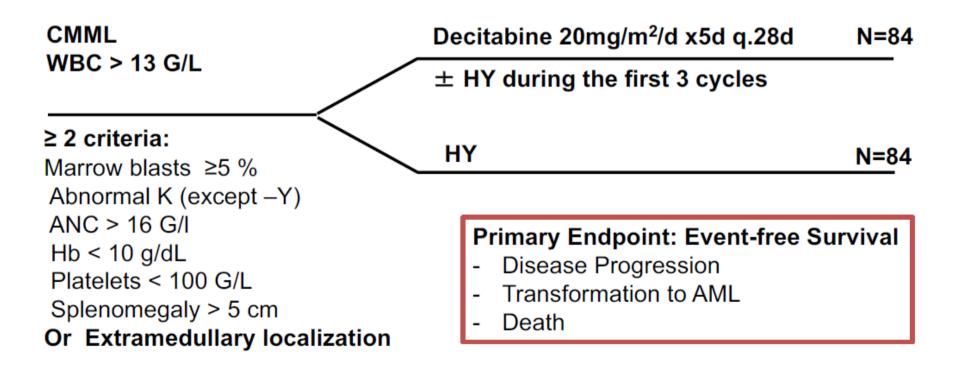
Splenomegaly (> 5 cm below costal margin)


Extramedullary localization

- Patients untreated or previously treated with Hydroxyurea or Etoposide given orally or non intensive chemotherapy or intensive chemotherapy given more than 3 months before inclusion
- PS 0-2, Expected survival > 6 months

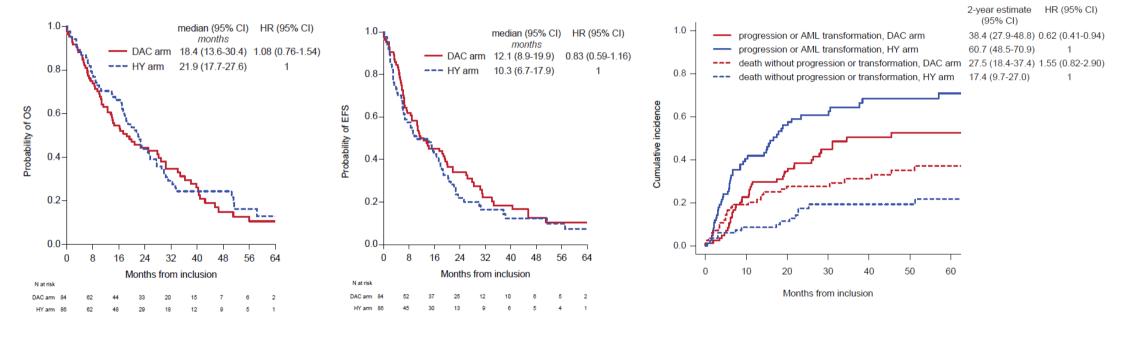
Santini et al. Leukemia 2017


### An Italian phase II multicentre trial of Decitabine in HR-CMML


Overall clinical response (end of cycle 6 or at early withdrawal)



|     | Number (%) of patients |                                        |                                        |                          |                          |  |  |  |
|-----|------------------------|----------------------------------------|----------------------------------------|--------------------------|--------------------------|--|--|--|
|     | <i>ITT (</i> n = 42)   | <i>CMML-1</i> <sup>a</sup><br>(n = 26) | <i>CMML-2</i> <sup>a</sup><br>(n = 16) | <i>dCMML</i><br>(n = 14) | <i>pCMML</i><br>(n = 28) |  |  |  |
| ORR | 20 (47.6)              | 15 (57.6)                              | 5 (31.25)                              | 9 (64.3)                 | 11 (39.3)                |  |  |  |
| CR  | 7 (16.6)               | 5 (19.2)                               | 2 (12.5)                               | 3 (21.4)                 | 4 (14.3)                 |  |  |  |
| mCR | 8 (19.0)               | 6 (23.1)                               | 2 (12.5)                               | 4 (28.6)                 | 4 (14.3)                 |  |  |  |
| PR  | 1 (2.4)                | 0 (0.0)                                | 1 (6.2)                                | 0 (0.0)                  | 1 (3.5)                  |  |  |  |
| HI  | 4 (9.5)                | 4 (15.3)                               | 0 (0.0)                                | 2 (14.2)                 | 2 (7.2)                  |  |  |  |
| SD  | 9 (21.4)               | 4 (15.3)                               | 5 (31.3)                               | 0 (0.0)                  | 9 (32.1)                 |  |  |  |
| PD  | 13 (31.0)              | 7 (26.9)                               | 6 (37.5)                               | 5 (35.7)                 | 8 (28.6)                 |  |  |  |


Santini et al. Leukemia 2017





V. Santini, U. Platzbecker, R. Itzykson

# DAC vs HY (DACOTA Trial)



Itzikson R et al. ASH 2020

# **CIBMTR retrospective study**

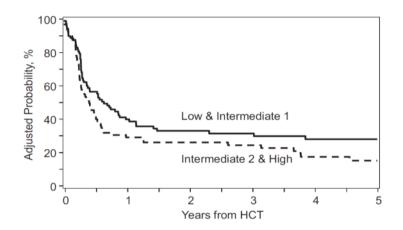
Pts number = 209 (2001-2012)

Median age 57 yrs (range 23-74)

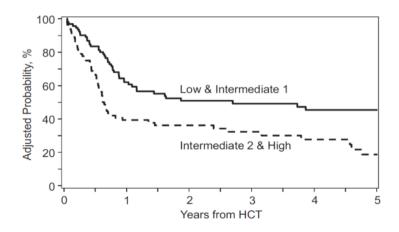
Median F-UP 51 months (2-122)

- OS for CPSS low/int-1 3-yr: 48% 5-yr: 44%
- OS for CPSS int-2/high
- REL for CPSS low/int-1
- REL for CPSS int-2/high 3-yr: 56% 5-yr: 60%
- NRM

Multivariate analysis:


- CPSS score
- Karnosky PS
- Graft SC source (PB better that BM)
- High CPSS score and KPS did not associate with TRM
- No difference between untreated vs treated (HMA or CT)

3-yr: <u>32% - 5-yr: 19%</u>


8-yr: 50% - 5-yr: 52%

8-yr: 23% - 5-yr: 28%

Liu HD et al. BBMT 2017

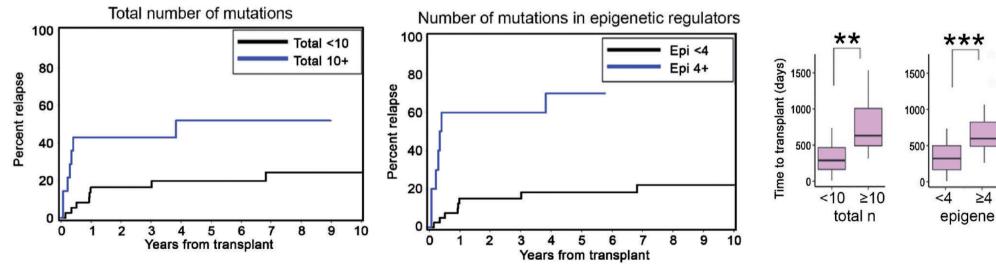


**Figure 1.** Adjusted disease-free survival, starting at the time of transplantation, by HCT-specific CPSS.



**Figure 2.** Adjusted overall survival, starting at the time of transplantation, by HCT-specific CPSS.

## Impact of molecular profiles on post-transplant long term survival in CMML


#### Impact of clinical, cytogenetic, and molecular errata Storti Foundation profiles on long-term survival after transplanta-tion in patients with chronic myelomonocytic leukemia

Janghee Woo.<sup>12</sup> Dae Ro Choi.<sup>1</sup> Barry E. Storer.<sup>1</sup> Cecilia Yeung.<sup>12</sup> Anna B. Halpern,12 Rachel B. Salit,12 Mohamed L. Sorror,12 David W. Woolston,1 Tim Monahan,<sup>1</sup> Bart L. Scott<sup>1,2</sup> and H. Joachim Deeg<sup>1,2</sup>

<sup>1</sup>Fred Hutchinson Cancer Research Center and <sup>2</sup>University of Washington School of Medicine, Seattle, WA, USA

129 pts allo-TX 1986-2017 NGS BM pre TX = 52 pts Total mut  $\geq 10 = 15$  pts Epigenetic mut  $\geq$  4 = 10 pts

Haematologica 2020 Volume 105(3):652-660



Woo J et al. Haematologica 2020

1500

1000

500

<3

signaling

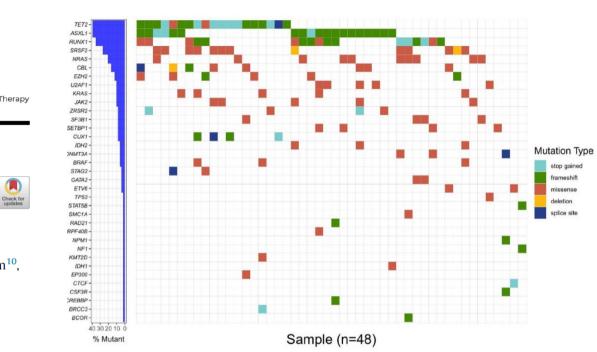
 $\geq 4$ 

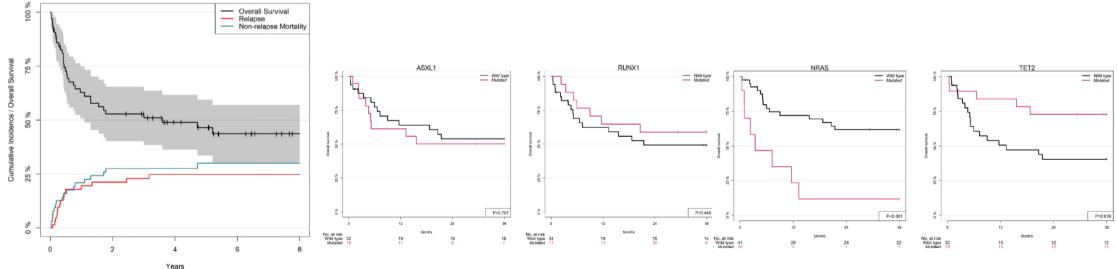
≥3

#### Transplantation and Cellular Therapy 27 (2021) 991.e1-991.e9



Transplantation and Cellular Therapy

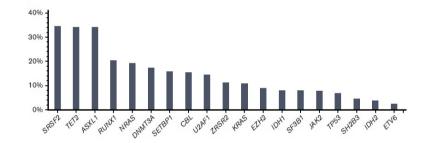


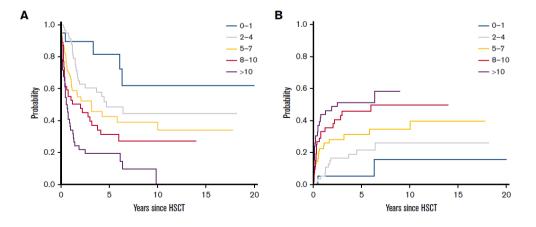


journal homepage: www.tctjournal.org

Full Length Article Allogeneic – Adult

Allogeneic Hematopoietic Stem Cell Transplantation for Chronic Myelomonocytic Leukemia: Clinical and Molecular Genetic Prognostic Factors in a Nordic Population

Eileen Wedge<sup>1,2,3</sup>, Jakob Werner Hansen<sup>1,2,3</sup>, Ingunn Dybedal<sup>4</sup>, Maria Creignou<sup>5,6</sup>, Elisabeth Ejerblad<sup>7</sup>, Fryderyk Lorenz<sup>8</sup>, Olle Werlenius<sup>9</sup>, Johanna Ungerstedt<sup>5,6</sup>, Mette Skov Holm<sup>10</sup>, Lars Nilsson<sup>11</sup>, Astrid Olsnes Kittang<sup>12</sup>, Peter Antunovic<sup>13</sup>, Peter Rohon<sup>14</sup>, Mette Klarskov Andersen<sup>15</sup>, Elli Papaemmanuil<sup>16,17</sup>, Elsa Bernard<sup>16,17</sup>, Martin Jädersten<sup>5,6</sup>, Eva Hellström-Lindberg<sup>5,6</sup>, Kirsten Grønbæk<sup>1,2,3</sup>, Per Ljungman<sup>5,6</sup>, Lone Smidstrup Friis<sup>1,\*</sup>




### **CMML Transplant Score**

### A prognostic score including mutation profile and clinical features for patients with CMML undergoing stem cell transplantation

Nico Gagelmann,<sup>1</sup> Anita Badbaran,<sup>1</sup> Dietrich W. Beelen,<sup>2</sup> Rachel B. Salit,<sup>3</sup> Friedrich Stölzel,<sup>4</sup> Christina Rautenberg,<sup>5</sup> Heiko Becker,<sup>6</sup> Aleksandar Radujkovic,<sup>7</sup> Victoria Panagiota,<sup>8</sup> Rashit Bogdanov,<sup>2</sup> Maximilian Christopeit,<sup>1</sup> Yong Park,<sup>3</sup> Olivier Nibourel,<sup>9</sup> Thomas Luft,<sup>7</sup> Michael Koldehoff,<sup>2</sup> Maarten Corsten,<sup>10</sup> Michael Heuser,<sup>8</sup> Jürgen Finke,<sup>6</sup> Guido Kobbe,<sup>5</sup> Uwe Platzbecker,<sup>11</sup> Marie Robin,<sup>12</sup> Bart L. Scott,<sup>3</sup> and Nicolaus Kröger<sup>1</sup>



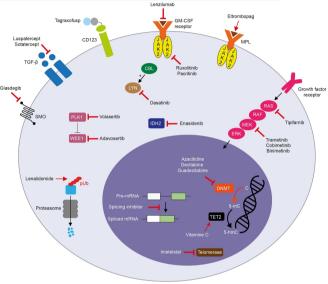


Total cohort = 240 pts Median age = 59 (19-74) WHO 0/1/2 = 10%/50%/40%

#### Table 4. Multivariate analysis

| Factor                       | Beta | HR   | 95% CI    | Р     | Points |
|------------------------------|------|------|-----------|-------|--------|
| Continuous comorbidity index | 0.15 | 1.16 | 1.07-1.25 | <.001 | 1      |
| >2 BM blasts, %              | 0.53 | 1.70 | 1.11-2.61 | .02   | 4      |
| Genotype                     |      |      |           |       |        |
| ASXL1- and/or NRAS-mutated   | 0.49 | 1.63 | 1.15-2.31 | .006  | 4      |

Concordance index: 0.68; corrected: 0.67.


5-year OS: Score 0-1 = 81% (95% CI 64-100%) Score 2-4 = 49% (95% CI 36-66%) Score 5-7 = 43% (95% CI 30-60%) Score 8-10 = 31% (95% CI 20-49%) Score >10 = 19% (95% CI 11-36%)

Gagelmann et al. Blood Advances 2021

## **Possible new treatments in CMML (experimental phase)**

- Modulating late stages of erythropoiesis (Luspatercept, Sotatercept)
- Inhibiting the GM-CSF axis (Lenzilumab, Mavrilumab)
- Stimulating thrombopoietin (Eltrombopag, Romiplostin)
- Novel epigenetic therapies (Guadecitabine, oral Azacytidine, oral DAC/cedazuridine)
- Non-epigenetic therapies:
- JAKi, SF3B-inhibitor, Tagraxofusp, Tipifarnib, BH3 mimetic, IDH1/2i, IDOi, PLKi, WEE1i

Mc Cullough KB, Patnaik M. Best Pract Res Clin Hematol 2020 / Lasho T, Patnaik M. Best Pract Res Clin Hematol 2021



# **Conclusions and future directions**

- CMML is an aggressive hematopoietic stem cell malignancy of older adults, with a median survival of <36 months</li>
- The integration of genetic and clinical variables appears to provide the maximal information for clinical decision-making, and is therefore highly recommended
- HMAs in CMML have limited efficacy in a minority of patients, with short duration of response
- Allo-HSCT may provide durable remission for selected patients with CMML, but it is still associated to high relapse rate and mortality risk
- New agents are currently under active development in CMML-specific trials
- Combination strategies including drugs with different mechanisms of action should be possibly investigated (e.g. HMA+Tagraxofusp)

# Acknowledgements

- > CTMO Osp Maggiore Policlinico, Milano
- > EBMT-CMWP
- > MDACC Leukemia Dept
- International CMML Consortium
- > MDS/MPN-IWG
- > EHA-ELN
- International CMML Working conference
- > FISiM

### francesco.onida@unimi.it

*"I would rather make mistakes in kindness and compassion than work miracles in unkindness and hardness"* 



# Thanks!

### Any questions?